Critical exponents of the Gross-Neveu model from the effective average action.

نویسندگان

  • L Rosa
  • P Vitale
  • C Wetterich
چکیده

The phase transition of the Gross-Neveu model with N fermions is investigated by means of a nonperturbative evolution equation for the scale dependence of the effective average action. The critical exponents and scaling amplitudes are calculated for various values of N in d = 3. It is also explicitly verified that the Neveu-Yukawa model belongs to the same universality class as the Gross-Neveu model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 01 07 13 4 v 1 1 2 Ju l 2 00 1 Critical and tricritical exponents of the Gross - Neveu model in the large - N f limit

The critical and the tricritical exponents of the Gross-Neveu model are calculated in the large-Nf limit. Our results indicate that these exponents are given by the mean-field values.

متن کامل

The Critical Exponents Of The Matrix Valued Gross-Neveu Model

We study the large N limit of the matrix valued Gross-Neveu model in 2 < d < 4 dimensions. The method employed is a combination of the approximate recursion formula of Polyakov and Wilson with the solution to the zero dimensional large N counting problem of Makeenko and Zarembo. The model is found to have a phase transition at a finite value for the critical temperature and the critical exponen...

متن کامل

Random Bond Ising Model and Massless Phase of the Gross - Neveu Model

The O(n) Gross-Neveu model for n < 2 presents a massless phase that can be characterized by right-left mover scattering processes. The limit n → 0 describes the on-shell properties of the random bond Ising model. Permanent address: International School for Advanced Studies and Istituto Nazionale di Fisica Nucleare, Trieste, Italy. 1. Aim of this paper is to discuss the S-matrix formulation of t...

متن کامل

The Phase Structure of the Gross-Neveu Model with Thirring Interaction at the Next to Leading Order of 1=N Expansion

We study the critical behavior of the D (2 < D < 4) dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. By using inversion method up to the next-to-leading order of 1=N expansion, we construct a gauge invariant e ective potential. We show the existence of the chiral order phase transition, ...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2001